首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2803篇
  免费   275篇
  国内免费   190篇
  2023年   67篇
  2022年   93篇
  2021年   66篇
  2020年   77篇
  2019年   100篇
  2018年   118篇
  2017年   95篇
  2016年   75篇
  2015年   68篇
  2014年   227篇
  2013年   220篇
  2012年   157篇
  2011年   187篇
  2010年   143篇
  2009年   149篇
  2008年   161篇
  2007年   193篇
  2006年   109篇
  2005年   91篇
  2004年   63篇
  2003年   52篇
  2002年   35篇
  2001年   21篇
  2000年   27篇
  1999年   34篇
  1998年   25篇
  1997年   20篇
  1996年   25篇
  1995年   26篇
  1994年   28篇
  1993年   33篇
  1992年   23篇
  1991年   20篇
  1990年   15篇
  1989年   16篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   24篇
  1984年   42篇
  1983年   31篇
  1982年   34篇
  1981年   28篇
  1980年   39篇
  1979年   35篇
  1978年   21篇
  1977年   25篇
  1976年   16篇
  1974年   22篇
  1973年   19篇
排序方式: 共有3268条查询结果,搜索用时 546 毫秒
41.
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a β-barrel pore-like structure, while for Pep-1, it is based on association of helices.  相似文献   
42.
与凋亡(apoptosis)相关的许多心脏疾病如心肌梗死、心肌病及心衰等严重威胁着人类的健康和生命.寻找有效手段防治这些心脏病是当前医学研究的热点.ARC(带有caspase富集功能域的凋亡抑制因子)是新近发现的唯一在心脏大量且特异表达的抗凋亡蛋白,其全称是带有caspase富集功能域的凋亡抑制因子.ARC可被持续性磷酸化并参与阻断凋亡发生途径的多个层面.因此,ARC是一种强大的抗心肌凋亡蛋白.  相似文献   
43.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50–150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a μg scale of biological samples both in vitro and in vivo.  相似文献   
44.

Background

Celiac disease (CD) is an immune-mediated disorder caused by the ingestion of wheat gluten. A lifelong, gluten-free diet is required to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase (mTGase) suppressed the gliadin-specific immune response in intestinal T-cell lines from CD patients and in models of gluten sensitivity.

Methods

SDS-PAGE, Western blot, ELISA, tissue transglutaminase (tTGase) assay and nano-HPLC–ESI-MS/MS experiments were used to analyze prolamins isolated from treated wheat flour.

Results

Gliadin and glutenin yields decreased to 7.6 ± 0.5% and 7.5 ± 0.3%, respectively, after a two-step transamidation reaction that produced a water-soluble protein fraction (spf). SDS-PAGE, Western blot and ELISA analyses confirmed the loss of immune cross-reactivity with anti-native gliadin antibodies in residual transamidated gliadins (K-gliadins) and spf as well as the occurrence of neo-epitopes. Nano-HPLC–ESI-MS/MS experiments identified some native and transamidated forms of celiacogenic peptides including p31–49 and confirmed that mTGase had similar stereo-specificity of tTGase. Those peptides resulted to be 100% and 57% modified in spf and K-gliadins, respectively. In particular, following transamidation p31–49 lost its ability to increase tTGase activity in Caco-2 cells. Finally, bread manufactured with transamidated flour had only minor changes in baking characteristics.

Conclusions

The two-step transamidation reaction modified the analyzed gliadin peptides, which are known to trigger CD, without influencing main technological properties.

General significance

Our data shed further light on a detoxification strategy alternative to the gluten free diet and may have important implications for the management of CD patients.  相似文献   
45.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
46.

Background

Starch is a main source of carbohydrate in human diets, but differences are observed in postprandial glycaemia following ingestion of different foods containing identical starch contents. Such differences reflect variations in rates at which different starches are digested in the intestine. In seeking explanations for these differences, we have studied the interaction of α-amylase with starch granules. Understanding this key step in digestion should help with a molecular understanding for observed differences in starch digestion rates.

Methods

For enzymes acting upon solid substrates, a Freundlich equation relates reaction rate to enzyme adsorption at the surface. The Freundlich exponent (n) equals 2/3 for a liquid-smooth surface interface, 1/3 for adsorption to exposed edges of ordered structures and 1.0 for solution–solution interfaces. The topography of a number of different starch granules, revealed by Freundlich exponents, was compared with structural data obtained by differential scanning calorimetry and Fourier transform infrared spectroscopy with attenuated total internal reflectance (FTIR-ATR).

Results

Enzyme binding rate and FTIR-ATR peak ratio were directly proportional to n and ΔgelH was inversely related to n. Amylase binds fastest to solubilised starch and to granules possessing smooth surfaces at the solid–liquid interface and slowest to granules possessing ordered crystalline surfaces.

Conclusions

Freundlich exponents provide information about surface blocklet structures of starch that supplements knowledge obtained from physical methods.

General Significance

Nanoscale structures at the surface of starch granules influence hydrolysis by α-amylase. This can be important in understanding how dietary starch is digested with relevance to diabetes, cardiovascular health and cancer.  相似文献   
47.

Background

Proteins are extremely reactive to oxidants and should represent a potential target of instable reactive oxygen. This may represent a problem for plasma proteins since they may be directly modified in vivo in a compartment where antioxidant enzymatic systems are scarcely represented. On the other hand, it is possible that some plasma components have evolved over time to guarantee protection, in which case they can be considered as anti-oxidants.

Scope of review

To present and discuss main studies which addressed the role of albumin in plasma antioxidant activity mainly utilizing in vitro models of oxidation. To present some advances on structural features of oxidized albumin deriving from studies carried out on in vitro models as well as albumin purified in vivo from patients affected by clinical conditions characterized by oxidative stress.

Major conclusions

There are different interaction with HOCl and chloramines. In the former case, HOCl produces an extensive alteration of 238Trp and 162Tyr, 425Tyr, 47Tyr, while thiol groups are only partially involved. Chloramines are extremely reactive with the unique free SH group of albumin (34Cys) with the formation of sulfenic and sulfinic acid as intermediates and sulfonic acid as end-product. Oxidized albumin has a modified electrical charge for the addition of an acidic residue and presents α-helix and random coil reorganization with subtle changes in domain orientation.

General significance

Albumin, is the major antioxidants in plasma with a concentration (0.8 mM) higher than other antioxidants by an exponential factor. Functional and protective roles in the presence of oxidative stress must be defined. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
48.
49.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   
50.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号